ACARP

Australian Coal Association Research Program

FINAL REPORT

Outbursting Scoping Study

C4034 March 1996

9.2.3 Polish Desorbometer

Polish desorbometer measures the ΔP value in terms of water gauge using a 3 g sample of size fractions +0.5 to -1.0 mm. Samples are taken from a 42 mm diameter hole drilled to a depth of 3 m and cuttings are collected from the last 10 cm of drill hole. Fractions are sealed and test started within 35 s and observations are made over the next 120 s. ΔP values (H₂O gauge) are reported as $\Delta P_{0.5}$, ΔP_1 and ΔP_2 which refer to water gauge reading at elapsed times of 0.5 min, 1 min and 2 minutes after sealing the sample (Tarnowski, 1966, 1968). The ΔP equal to 120 mm of H₂O over 2 minute period has been found to be the limiting value for defining conditions of an imminent outburst in anthracite mines with CO₂ in Lower Silesian coal field (basin), Poland (Kozlowski and Polak, 1978 a, b).

Some of the ΔP indices used in various countries are given in Table 9.2.

9.2.4 K_T Index

This index is a measure of the change in desorption rate of a coal sample. The emission of gas from a coal sample can be related to a power function of the type

$$\frac{\dot{\mathbf{V}}_2}{\dot{\mathbf{V}}_1} = \left(\frac{\mathbf{T}_2}{\mathbf{T}_1}\right)^{\mathbf{K}_t} \tag{9.3}$$

Taking the logs from both sides

$$K_{t} = \left(\frac{\ln \dot{V}_{1} - \ln \dot{V}_{2}}{\ln T_{2} - \ln T_{1}}\right)$$
(9.4)

where \dot{V}_{T_1} = amount of gas desorbed (cc/g min) at time T_1 \dot{V}_{T_2} = amount of gas desorbed (cc/g min) at time T_2

Thus if the ratio of gas desorbed is plotted against time on ln-ln scale, the slope of the curve gives the K_T value (Fig. 9.9). Studies conducted have shown that the coefficient K_t is dependent upon a range of parameters. The critical value $K_T < 0.645 \pm 0.035$ is considered normal. For outbursts K_T should be higher or at least 0.75%.

468

The method of sampling consists of drilling holes and collecting fractions of particles in the range of 0.4 - 0.63 mm. The weight of the sample depends upon the capacity of the equipment. The critical K_t value relates to gas content of $9m^3/t$. The slope of the curve (Fig. 9.9) at desorption time of 1 min gives the desorption rate of the sample. This value denoted by \dot{V}_1 (at t = 1) is related to the K_t value through a relationship

$$\dot{\mathbf{V}}_1 = \dot{\mathbf{V}}_t \mathbf{t}^{\mathbf{K}_t} \tag{9.5}$$

This is shown in Fig. 9.10. Thus the amount of gas desorbed over a time a to b can be calculated by integrating and is given by

$$Q_{a-b} = \frac{\dot{V}_1}{(1-K_t)} \left(t_b^{1-K_t} - t_a^{1-K_t} \right)$$
(9.6)

The amount of gas desorbed over the time 0 - 1 minute is given by

$$q_{0-1} = \frac{\dot{V}_1}{(1-K_t)}$$
, cm³/kg (9.7)

The desorbable gas content of coal has been found to be related to \dot{V}_1 through a relationship;

$$Q_d = 29.4 \dot{V}_1 - 0.1 \tag{9.8}$$

The above relationship is valid for particle sizes of 0.4 - 0.63 mm. The \dot{V}_1 value for 9m³/t is >400 cm³/kg.

Fig. 9.11 shows the changes in \dot{V}_1 and K_t values while going through an outburst zone in seam #54 in Ibbenbüren Colliery. K_t value variations in Leichhardt Colliery, Gemini seam are given in Fig. 9.12.

Automated equipment has been developed for use underground in mines (Noack, 1995).

(p-1) = 10 bar

Particle size d = 0.2 to 0.315 mm

Sample	K _t -value	
а	0.91	1000
b	0.91	970
C	0.78	630
đ	0.65	340
e	0.60	250

Fig. 9.10. Methane desorption rate for different K_t values (Janas and Winter, 1977).

Fig. 9.11. K_T and \dot{V}_1 values while mining through an outburst zone in #53 seam, Ibbenbüren (Janas and Winter, 1977)

K_t-Wert - K_t-Value \dot{V}_1 -Wert in cm³/min.kg - \dot{V}_1 -value in cm³/min.kg Streckenlänge in m -Roadway length, m Östlicher Stoß - East face Westlicher Stoß - West face An beiden Stößen gleich -Equal value at both the faces Korngröße d = 0.2 bis 0.315 mm -Particle size between 0.2 - 0.315 mm

an**a** Ar Ar Mysian g

Fig. 9.12. Variations in K_T value in Gemini seam, Leichhardt Colliery (Janas and Winter, 1977).

Glanzkohle - Bright coal Mattkohle - Dull coal Bergestreifen - Shale band Matt-Glanzkohle - Dull-bright coal

